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ABSTRACT
Autonomous robots are increasingly used in remote and hazardous

environments, where damage to sensory-actuator systems cannot

be easily repaired. Such robots must therefore have controllers that

continue to function effectively given unexpected malfunctions and

damage to robot morphology. This study applies the Intelligent Trial
and Error (IT&E) algorithm to adapt hexapod robot control to vari-

ous leg failures and demonstrates the IT&E map-size parameter as

a critical parameter in influencing IT&E adaptive task performance.

We evaluate robot adaptation for multiple leg failures on two dif-

ferent map-sizes in simulation and validate evolved controllers on

a physical hexapod robot. Results demonstrate a trade-off between

adapted gait speed and adaptation duration, dependent on adap-

tation task complexity (leg damage incurred), where map-size is

crucial for generating behavioural diversity required for adaptation.
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1 INTRODUCTION
Autonomous robots will potentially explore distant or hostile envi-

ronments which would otherwise be entirely inaccessible, or pose a

substantial risk to humans [1, 4]. This provides enormous benefits

to scientific exploration [2, 3], search and rescue [11], and disaster

recovery [24]. Due to the complexity and unpredictability of these

harsh environments, hardware reliability has been identified as a

significant challenge [5]. This is particularly pertinent as in situ re-

pair or retrieval is not possible. Humans and animals have evolved

the ability to rapidly adapt to unexpected injuries and impediments.

Robots with this ability could continue to function even when faced

with unexpected hardware failures or damage. Unlike traditional
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Algorithm 1 IT&E adapted from [9]

1: Initialize:
Behaviour-performance map with MAP-Elites

2: while in mission do
3: if significant performance drop then ⊲ Leg failure

4: Adaptation with M-BOA

diagnosis and contingency methods [18], the ability to adapt does

not require anticipation and planning of possible failures [25, 26].

Recently model-based reinforcement learning approaches have

shown promise for legged robot adaptation tasks. These involve

learning a gait-dynamics model using a simulation of the robot and

reinforcement learning, and then optimising the learnt policy [6, 19,

23, 28] using state data from sensors on the real robot. An issue with

such methods is their use of high dimensional state information

relative to the action space. For example, a robot with an 18D

action space required 48D of state information. This is infeasible

for many applications given strict limits on state information from

the robot’s Inertial Measurement Unit (IMU)
1
. The Intelligent Trial

and Error (IT&E) algorithm [9], (algorithm 1), takes a different

approach to adaptation. First a diverse collection of gaits (behaviour-
performance map) is generated using the MAP-Elites algorithm [22].

If the current gait is not performing as expected then the behaviour-

performance map is explored online using Bayesian optimisation

[16] to find a gait which performs optimally with the failure.

IT&E was tested on an 18 degree-of-freedom hexapod robot

(Pexod), enabling it to adapt to various leg failures in under two

minutes using only 1D feedback about its walking speed. This low

dimensional feedback requirement makes IT&E ideal for imple-

mentation on robots with limited sensors. Pexod [9] used a simple

open-loop oscillator as the gait controller for locomotion. While

this adequately highlighted the efficacy of the IT&E algorithm, its

simplicity severely limits its applications to legged robots which

require precise control over the foot trajectories and placement.

This study however uses a legged hexapod robotwith a kinematic

and trajectory based gait controller where the feet follow a designed

trajectory and can use body orientation data from the IMU for

stabilisation [7]. Our hexapod was developed for potential use in

search and rescue scenarios [7], but currently has no means of

detecting the failure of its actuators, and due to its fixed tripod gait,

is rendered immobile if even only one of its 18 actuators fail. This is

unnecessary as the robot is over-actuated and therefore inherently

redundant. Even with the loss of an entire leg there are still five

fully functional legs remaining to continue with walking. As a case

study, we thus extend IT&E to adapt our hexapod gait behaviour

online, in response to leg damage.

1
The hexapod used in this study only provides 9D state information from its IMU
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Figure 1: Rendering of the hexapod robot

1.1 Research Objectives and Contribution
The study objective is to present newmethodswhich integrate IT&E

with our hexapod’s trajectory based gait controller and evaluate task

performance as adaptation to various leg failures in both simulation

and on the physical robot. Study results indicate that the behaviour-

performance map is a crucial component to adaptation in IT&E

with various characteristics significantly impacting adaptive task

performance. One such characteristic is the map size. Previous

work has investigated the impact of map size selection, however

this analysis was limited to the performance of the behaviours

generated within the map [31]. A key contribution of this study is

thus elucidation of the impact of differentmap sizes on the evolution

of gaits (suitable adaptation of task performance) given various

degrees of morphological (leg) damage.

2 PHYSICAL ROBOT
Experiments used a custom hexapod robot (figure 1), with a circular

symmetrical design, 18 degrees-of-freedom and a weight of approx-

imately 3.5 kg. Each of its six legs are actuated by two Dynamixel

RX-28 servos [27] at the coxa and tibia joints and one Dynamixel

RX-64 servo [27] at the femur joint. The control algorithms run on

an on-board STM32F407VGT6 micro-controller [29], and the robot

is powered by either the built-in batteries or a 25V external power

supply. The primary sensor on the robot is an Xsens MTi-28A33G35

IMU [33] which provides 9D body inertial state information.

2.1 Gait Controller
The hexapod robot uses the closed-loop kinematic gait controller

from [7] to walk. High-level gait commands sent by the user are

transformed into foot trajectories and then servomotions. A straight

line trajectory is used for the support phase foot motion and a 6
th

order polynomial is used for the swing phase foot motion. The

foot trajectories are transformed into joint angles using inverse-

kinematics which are then sent to the servos at 120Hz. The con-

troller for this study was used in its open-loop configuration with

base stabilisation turned off. Controller parameterisation and leg

trajectories were inspired by related work [32] and included funda-

mental components of statically stable legged gaits such as support

polygon [20] and foot timing [17], thus producing diverse symmet-

rical and asymmetrical gaits and common hexapedal gaits [13].

Leg Radius (𝑟𝑖 ) Controls how close the foot support phase is

to the body during walking.

Leg Angle (𝜃𝑖 ) Controls hip angle of a leg during walking. An-

gle is relative to default radially outwards leg position.

Table 1: Gait parameter range

Parameter Symbol Range

Body Velocity 𝑣 0 – 0.5 ms
−1

Body Height ℎ 0 – 0.2 m

Leg Radius 𝑟𝑖 0 – 0.3 m

Leg Angle 𝜃𝑖 -100 – 100 °

Leg Step Height 𝑠𝑖 0.05 – 0.2 m

Leg Phase Offset 𝜙𝑖 0 – 180 °

Leg Duty Factor 𝛽𝑖 0 – 1.0

Leg Step Height (𝑠𝑖 ) Controls the maximum height attained

by the foot during the swing phase.

Leg Duty Factor (𝛽𝑖 ) Controls the portion of time a leg spends

in the support phase out of the whole gait cycle.

Leg Phase Offset (𝜙𝑖 ) Controls the phase offset of a legs sup-

port and swing cycle.

The 𝑖 subscript denotes that each leg has a unique parameter. The

next two parameters are however not unique for each leg and serve

to impose a degree of coordination between each of the feet.

Body Velocity (𝑣) Common velocity of each foot driving the

base in the commanded direction during their support phase.

Body Height (ℎ) Determines the common height the feet will

be at during the support phase to maintain a level base.

This amounts to a total of 32 parameters for control of the gait with

5 parameters per leg and 2 whole-body parameters. The leg cycle

was kept fixed for each leg at 1Hz to stop the leg cycles moving in

and out of phase. The default gait used on the robot is the tripod

gait [13] facilitating greater speed [7]. This gait has the following

parameters and was used as the reference gait in our experiments:

𝑣 = 0.3m s
−1 𝑟𝑖 = 0.15m 𝜃𝑖 = 0° 𝜙1,3,5 = 0°

ℎ = 0.14m 𝑠𝑖 = 0.05m 𝛽 = 0.5 𝜙2,4,6 = 180°

The bounds of the gait controller parameters are determined by the

reachable bounds of the legs, and the range for these parameters

is shown in table 1. The lower bound of the step height was set to

5 cm to ensure the feet were lifted for the swing phase. If a foot

is commanded outside of its reachable area due to the controller

parameters, the controller throws an error.

3 SIMULATOR
Our dynamics simulator uses the PyBullet [8] physics engine run-
ning at 240Hz, with a URDF model of the hexapod and MAP-Elites

to generate behaviour-performance maps. The URDF model was

created from a SolidWorks model of the robot with almost identical

dimensions and inertial properties. The inertial properties for the

links were calculated using SolidWorks and the geometry of the

links was modelled with STL files. Simplified geometries with the

same outer dimensions were used to reduce the model loading time.

3.1 Approximations
The robot interacts with the environment through contacts between

the feet and the ground. Simulating foot contacts is challenging

as the friction coefficient can vary substantially between surfaces.
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We chose a relatively high friction coefficient of 0.7 to disincen-

tivise dragging of the feet as this was an undesirable behaviour

for the physical robot. The gait controller on the physical robot

was replicated with the only difference being that the controller in

simulation runs at 240Hz while the controller on the physical ro-

bot runs at 120Hz. The physical servo torque and angular velocity

limits were included in the simulation, however the torque-speed

relationship was ignored.

4 MAP GENERATION
The first stage of the IT&E adaptation algorithm is the generation

of a collection of diverse and high performing gaits, referred to

as a behaviour-performance map, which serves as experience the

robot can draw from when it needs to adapt [9]. The map
2
is gen-

erated with the CVT-MAP-Elites algorithm presented in [31] and

reproduced in algorithm 2. We used the Python implementation

provided in the pymap_elites GitHub repository [21]. CVT-MAP-

Algorithm 2 CVT-MAP-Elites adapted from [31]

1: C ← CVT(𝑘)
2: (X,P) ← create_empty_archive(𝑘)
3: for 𝑖 = 1→ 𝐺 do
4: x← random_solution()
5: add_to_archive(x,X,P)
6: for 𝑖 = 1→ 𝐼 do
7: x1, x2 ← random_selection(X)
8: x′ ← SBX(x1, x2)
9: add_to_archive(x′,X,P)

return (X,P)
10: function add_to_archive(x, X, P)
11: 𝑝, b← simulate(x)
12: 𝑐 ← index_of_closest_centroid(b, C)
13: if P(𝑐) = ∅ or P(𝑐) < 𝑝 then
14: X(𝑐) ← x,P(𝑐) ← 𝑝

Elites begins by discretising a user-defined behaviour space into 𝑘

evenly spaced niches with a Centroidal Voronoi tessellation (CVT)

to ensure a uniform distribution of behaviours. Another version

of MAP-Elites [22] uses a grid-based approach to discretisation,

however this does not provide required precise control over the

number of niches. Once 𝑘 niches have been created, the behaviour-

performance map (X,P) is initialised to store solutions (X) and
their corresponding performances (P). To provide an initial popu-

lation,𝐺 random solutions (x) are initialised and stored in the map.

A solution represents the 32 gait controller parameters in the form:

x = [

body︷︸︸︷
𝑣 ℎ

leg 1︷                      ︸︸                      ︷
𝑟1 𝜃1 𝑠1 𝛽1 𝜙1 . . .

leg 6︷         ︸︸         ︷
𝑟6 . . . 𝜙6]

The parameters and gait controller are evaluated with our simula-

tion of the hexapod to determine a performance (𝑝) and a behaviour

descriptor (b) associated with the gait. The behaviour descriptor

determines the location of the solution in the behaviour space and

therefore which niche it will occupy. After random initialisation

MAP-Elites follows a parent selection and genetic variation loop

2
The term behaviour-performance map is used interchangeably with map

[14]. Solutions are randomly selected from the map and varied

with the Simulated Binary Crossover (SBX) operator [12]. The mu-

tated solution (x′) is added to the map in its corresponding niche

provided the niche is empty (P(𝑐) = ∅) or the present solution

is lower performing (P(𝑐) < 𝑝). The selection and variation loop

runs for 𝐼 evaluations gradually filling the map with behaviourally

diverse and high-performing solutions. We ran MAP-Elites for 40

million evaluations with the following parameters (appendix A.1).

The number of evaluations was guided by related work [9] and job

time limits on the computing cluster. Due to the stochastic nature

of the algorithm the final collection of gaits can vary with each run,

so 20 independent maps were generated to account for this.

4.1 Performance Metric
Gait performance (𝑝) was defined as the average velocity of the

center of the hexapod’s body along a single axis in the simulation.

It is worth noting that this gait performance relates directly to the

velocity parameter (𝑣) in the gait controller, however this parameter

cannot simply be increased to produce faster gaits as the legs will

begin to collide. Full coordination of the legs therefore needs to

be evolved to produce faster walks. To disincentivise unsafe gaits

the following conditions resulted in immediate termination of the

simulation with the gait being assigned a performance of 0m s
−1
:

• Collisions between the legs

• Collisions between the base and the ground

• Leg kinematic singularities

The velocity along a single axis incentivised the generation of gaits

which exhibited straight line motion in a desired direction. The

robot was oriented with three legs on either side of this desired

walking direction (figure 3a).

4.2 Behaviour Descriptor
The behaviour descriptor (b) to describe gaits was a 6-dimensional

vector describing time portions each foot spends in contact with the

ground (duty factor [17]). This is a common metric used to describe

gaits and is expressed mathematically as:

b =
[
𝑏1 . . . 𝑏6

]
=

[∑
𝑐1 (𝑡 )
𝑛𝑡

. . .
∑
𝑐6 (𝑡 )
𝑛𝑡

]
(1)

Where 𝑐𝑖 (𝑡) represents the 𝑖𝑡ℎ Boolean foot-ground contact at time-

step 𝑡 and 𝑛𝑡 is the number of time-steps. Contacts are computed

by the physics engine per simulation time-step. This descriptor was

also demonstrated to perform well in 6-legged robot adaptation [9].

4.3 Map Size Experiments
Behaviour-performance map size is determined by the number of

niches (𝑘) which ultimately controls the degree of diversity. While

the behaviour space remains unchanged, a map with more niches

will contain a greater number of novel gait solutions within this

space and therefore exhibit a greater degree of diversity. Solution

diversity was identified as a crucial component in enabling adap-

tation as it improved the chances of finding a compensatory gait

[9]. However, greater diversity comes at the cost of reduced selec-

tive pressure for performance [31], requiring more evaluations and

computational resources to achieve similar performance for larger

maps. Clearly sacrificing some map diversity will result in greater
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walking performance, however, it is unclear how this will translate

to adaptation task performance where diversity also plays a role.

To investigate this we generated two different map sizes (20k and

40k), for comparison. These sizes were selected based on previous

implementations [9, 22, 30, 31] and prior experimentation.

4.4 Computing Hardware
Map generation was executed on the South African Lengau high-

performance computing cluster using 240 2.6GHz Intel Xeon cores

across 10 compute nodes. Concurrent evaluations was achieved

with the pythonmpi4py library [10]. To reduceMPI communication

overhead and overall runtime we used a batch size of 2390 so each of

the 239 worker processes executes a batch of 10 simulations before

returning results to the master process. Generation of a single map

took on average 40 hours with a peak cumulative RAM usage of

approximately 150GB and an average core utilisation of 40%.

4.5 Quality Metrics
To compare the 20k and 40k behaviour-performance maps we used

the same 4 metrics from [22, 30] to quantify the quality of the maps.

The quality metrics are the global performance, global reliability,

precision, and coverage. The global performance represents the

proximity to the highest performing solution across all runs. Map

reliability is the average performance of the niches filled during

any run while precision is only the average performance across

niches filled for that particular run. Coverage is simply the number

of niches filled for a single run. In addition to these metrics we also

considered the maximum performance, average performance, and

coverage of the maps during generation.

5 ADAPTATION
When a failure occurs on the robot, gaits from the map no longer

perform as expected as they are all evolved with a fully functional

robot. As a result of the diversity of gaits within the map, some

of the gaits will perform well with the failure, while others will

perform worse. Adaptation involves intelligently exploring the

map to find a gait which performs well. This is achieved using the

Map-based Bayesian Optimisation Algorithm (M-BOA) presented in

[9] and reproduced in algorithm 3. A prediction of how the gaits

in the map will perform (𝑃 ) is modelled with a Gaussian process

(N ), using the expected performances from the map (P) as a prior,
similar to traditional Bayesian optimisation [16]. The gait predicted

to perform the best is selected based on the upper confidence bound
(UCB) acquisition function. This gait is trialed on the failed robot

and its performance (𝑝𝑡+1) is used to update the prediction model.

This process repeats building a better prediction as to how gaits

in the map will perform with the failure, and terminates once the

actual performance (𝑝𝑡+1) is within 𝛼 of the maximum predicted

performance. The parameters for this algorithm were kept the same

as [9] and can be found in appendix A.2. The primary metrics for

evaluating adaptation are the speed of the final gait and the number

of trials required for adaptation, analogous to the duration for

adaptation. We evaluated adaptation for these metrics in simulation

and reality with each gait trial lasting 5 s, as in related work [9].

Algorithm 3 M-BOA adapted from [9]

1: ∀x ∈ 𝑚𝑎𝑝

2: 𝑃 (𝑓 (x) |x) = N(𝜇0 (x), 𝜎2
0
(x))

3: 𝜇0 (x) = P(x)
4: 𝜎2

0
(x) = 𝑘 (x, x)

5: while max(P1:t) < 𝛼 max(𝜇𝑡 (x)) do
6: x𝑡+1 ← argmax𝑥 (𝜇𝑡 (x) + 𝜅𝜎𝑡 (x))
7: 𝑝𝑡+1 ← evaluate(x𝑡+1)
8: 𝑃 (𝑓 (x) |P1:𝑡+1, x) = N(𝜇𝑡+1 (x), 𝜎2𝑡+1 (x))
9: 𝜇𝑡+1 (x) = P(x) + k𝑇K−1 (P1:𝑡+1 − P(X1:𝑡+1))
10: 𝜎2

𝑡+1 (x) = 𝑘 (x, x) − k𝑇K−1k
11: where:

12: K =


𝑘 (x1, x1) . . . 𝑘 (x1, x𝑡+1)

.

.

.
. . .

.

.

.

𝑘 (x𝑡+1, x1) . . . 𝑘 (x𝑡+1, x𝑡+1)


13: k =

[
𝑘 (x, x1) 𝑘 (x, x2) . . . 𝑘 (x, x𝑡+1)

]

Figure 2: Leg locked in the failed position

5.1 Failure Scenarios
To test adaptation, we defined four failure scenarios. These encom-

pass all configurations for one and two full leg failures. Failures

of more than two legs were not considered as this would require

dynamic stabilisation to remain balanced while walking, which is

beyond gait controller capabilities. The failure scenarios are:

S1 One failed leg

S2 Two failed legs separated by two functional legs

S3 Two failed legs separated by one functional leg

S4 Two adjacent failed legs

Each failure scenario can occur in a number of orientations around

the body. Scenario’s S1, S3, and S4 have 6 unique orientations,

and S2 has 3 unique orientations, resulting a total of 21 failure

combinations. To approximate a failure, rather the removing the

legs as in [9], the leg was locked in a retracted position shown

in figure 2. This ensures that the leg cannot provide support and

will not interfere with the other legs whilst still retaining its dead-

weight, analogous to how an animal might lift up an injured leg.

5.2 Simulated Experiments
The aim of the simulated experiments was to evaluate the influence

of the different map sizes on overall adaptation performance with-

out the additional variables associated with transferring controllers

to the real robot. Both of the 20k and 40k behaviour-performance
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Table 2: Physical adaptation experiment configuration

Experiment Failure Scenario Map

1

None

– 40k_1

2 – 40k_2

3

S1

Leg 1 40k_2

4 Leg 4 40k_2

5

S2

Leg 1 & 4 40k_4

6 Leg 1 & 4 40k_6

map sizes were tested with each of the 21 combinations of failure

scenarios and orientations, equating to 840 independent adaptation

tests. Prior work showed that maps of this size would be adequate

for a variety of hexapod leg adaptation tasks [9, 22, 30, 31], however,

there is not a clear method for selecting adequate map sizes. The

same performance metric introduced in section 4.1 was used as the

gait performance feedback (𝑝𝑡+1) for M-BOA; however, the early

termination conditions were ignored. Other than these changes the

simulator was kept identical to one used in the map generation

stage. The performance of the reference gait without adaptation

was also evaluated with each of the failures for comparison.

5.3 Physical Experiments
We performed a small number of preliminary experiments with

available maps to test adaptation performance on the real robot. The

goal of these experiments was to determined whether the evolved

gait controllers could be successfully transferred to the real robot,

and whether M-BOA resulted in adaptation to leg failures. The

case with no leg failures was used to investigate the controller

transfer, and failure scenarios S1 and S2 were used to investigate

adaptation performance. For S1 and S2 we only considered the

orientations with legs 1 and 4. There was no logic behind this

decision as in reality any leg could fail. At the time of testing only

10 of the 40k maps were available, so we used the four of these maps

with the highest mean performance across all niches (maps 1, 2, 4

and 6). These maps and failures were combined into the following

experiment configurations (table 2).

The robot in the physical environment shown in figure 3a was

configured identically to the simulated environment shown in fig-

ure 3b. For each trial the gait performance was manually measured

and fed back into the M-BOA algorithm. A notable difference be-

tween the simulated and physical environment is the ground sur-

face. The simulation had perfectly smooth plane with constant

friction while the physical environment had polyester carpeting.

Otherwise the two environments could be considered comparable.

6 RESULTS AND DISCUSSION
MAP-Elites was run for 40M evaluations for both the 20k and

40k maps, and 20 independent runs were done of each map size

resulting in a total of 40 maps. The selection of 40M evaluations as

the termination criterion was due to cluster compute time limits.

Figure 4 shows the gait performance and niche coverage progress

of these maps. After approximately 10M evaluations the majority

of the niches (85%) have been filled and the map coverage shown

(a) Physical (b) Simulated

Figure 3: Hexapod robot aligned with the coordinate axes.

in figure 4c remains relatively stable. For both map sizes 40M eval-

uations appears to have evolved sufficiently high performing gaits.

The smaller 20k map consistently has higher maximum and mean

gait speeds shown in figure 4a and figure 4b. This is consistent with

results from [31] and attributed to greater evolutionary pressure

for performance given fewer niches. With this added performance

pressure the maximum performance in the smaller maps reaches

the maximum gait speed and plateau’s at 0.5m s
−1

which is gov-

erned by the body velocity parameter (𝑣) range in table 1. While

MAP-Elites is a stochastic algorithm, the shaded region in figure 4

shows that the 20 independent runs remain reasonably consistent

for the two map sizes. Overall these results show that MAP-Elites

is performing as expected and 40M evaluations is adequate.

Final map quality is shown in figure 5 based on the four metrics

mentioned in section 4.5. Added performance pressure as a result of

the smaller map is confirmed when looking at the quality metrics

in figure 5. The smaller 20k map has a significantly higher (𝑝 <

3 × 10−18, Welch’s t-test [15]) global performance (figure 5a).

Reliability and precision is similar for both map sizes indicating

that even with the performance pressure disparity, both map sizes

contain on average solutions which perform within 80% of the high-

est performing solution in each niche. Both map sizes also have

similar coverage of about 90%, indicating that the gait controller

presented here exhibits sufficient diversity to fill the behavioural

space. Furthermore, the number of niches only changes the degree

of discretisation of the behaviour space and therefore does not alter

the final map coverage. To summarise the map generation results,

the smaller map contains higher performing gaits as the focus is less

on diversity and more on performance compared to the larger map

given identical computing resources. Additionally our proposed pa-

rameterised gait controller is both evolvable and exhibits sufficient

behavioural diversity to adequately fill the behaviour space.

6.1 Simulation
With the IT&E algorithm the simulated hexapod consistently walks

significantly faster (𝑝 < 4 × 10−23, Welch’s t-test [15]) than the

reference gait after adapting to a leg failure for both map sizes, as

shown in figure 6a. While there is a substantial drop in performance

of 0.2m s
−1

for the reference tripod gait with leg failures there is

little to no drop in performance after adaptation. These adaptation

results are consistent with the results from [9] and show that the
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Figure 4: Performance and coverage of behaviour-performance maps (a) The gait speed of the highest performing gait in the
map (b) Mean performance of all of the gaits in the map (c) Percentage of filled niches in the map. For all figures, solid lines
represent the means over 20 independently generated maps and shaded regions extend to maximum and minimum range.
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Figure 5: Behaviour-performance map quality across all (normalised) quality metrics (a) Map global performance (proximity
to highest-performing solution). (b) Map global reliability (average performance of fill-able niches). (c) Map precision (average
performance of niches filled). (d) Map coverage (number of niches filled). Each box plot shows distribution across 20 indepen-
dently generated maps for two map sizes. Whiskers extend to 25th and 75th percentiles. Outliers shown with grey circles.

M-BOA algorithm is performing as expected. Failure scenarios S2–

S4 all have 2 failed legs, however adapted performance gradually

decreases from S2 to S4 indicating an increased difficulty. This is

attributed to weight imbalance as a result of failed legs being closer

together, and the limited ability of the functional legs to move to

compensate for this as the gaits in the map are trained using a fully

functional hexapod and are penalised when the legs collide.

This results in the evolved gaits still having the legs evenly

spaced around the body as if there were 6 functional legs even

though there are now only 4. When considering the impact of map

size on adaptation, figure 6a shows that the smaller performance

oriented 20k map results in a significantly faster (𝑝 < 9 × 10−17,

Welch’s t-test [15]) gaits for failure scenarios S1-S3. Furthermore,

this is achieved in a similar number of trials as the larger map

shown by figure 6b. The increased focus on performance has trans-

ferred directly to adaptation resulting in a greater performance

after adaptation. Also, halving diversity for the smaller map re-

quired to achieve this higher performance does not appear to have

detrimentally impacted either adaptation task performance metric.

For the most difficult failure scenario S4 the larger map overall

performs better as it is able to achieve similar adapted performance

in significantly fewer (𝑝 < 4 × 10−7, Welch’s t-test [15]) trials than

the smaller 20k map. However, the exact cause for this is the subject

of ongoing research.
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Figure 6: Simulated adaptation performance (a) Walking performance after adapting to failures in simulation. The red stars
represent the mean gait performance of the reference tripod gait. (b) Number of trials required to adapt to failures in simula-
tion. Box plots show distributions across 20 independently generated maps and all failure orientations.

6.2 Reality
Evolved controllers were successfully transferred to the physical

robot and in the case of the undamaged scenario in figure 7a, en-

abled the hexapod to walk faster than the reference tripod gait. Gait

performance was lower for all failure scenarios on the physical com-

pared to the simulated robot. The performance drop also appears

to be similar between failure scenarios. During the experiments

foot slippage was noted and can be seen in the experiment videos

(appendix A.3). This results from different floor surface properties

in simulation and the laboratory where gaits evolved in simulation

could rely on the relatively high coefficient of friction of 0.7 for grip.

Also, 9–12 trials are required to find an optimal gait even without

any failures. This is substantially more than the 2-5 trials required

in [9], suggesting a slightly larger reality gap. However, even with

the reality gap and different flooring material, the M-BOA adapta-

tion algorithm resulted in the hexapod walking 2x faster than the

reference tripod gait for both failure scenarios S1 and S2, shown in

figure 7a. These results show the custom robot and gait controller

are successfully able to failure scenarios S1 and S2 (section 5.1).

7 CONCLUSION
Results indicate a distinct trade-off between maximising adapted

performance for simpler failures and minimising the number of tri-

als (adaptation duration) for more difficult failures, thus elucidating

the extent of adaptability given multiple leg failures for a hexapod

robot, and highlighting the influence of the behaviour-performance

map. We also presented new methods for integrating IT&E with an

existing kinematic and trajectory based gait controller using funda-

mental components of statically stable legged locomotion which

we validated on our physical hexapod robot. This controller allows

for significantly refined and intuitive control over foot motions,

while still exhibiting a level of behavioural diversity required to

suitably adapt gaits to leg damage using IT&E.

In future work, we plan to investigate even smaller map sizes

to determine where reduced map diversity begins to become detri-

mental to adaptation task performance. We also plan to conduct

significantly more experiments on the physical robot to determine

whether the same results are evident in reality.

ACKNOWLEDGMENTS
The authors acknowledge this research was partially funded by

the South African National Research Foundation (NRF): Human and

Social Dynamics in Development Grant (Grant No. 118557), with

the aid of the Center for High Performance Computing (CHPC), South
Africa, for providing computational resources to this project.

REFERENCES
[1] P. Arm and et al. 2019. SpaceBok: A Dynamic Legged Robot for Space Explo-

ration. In 2019 International Conference on Robotics and Automation (ICRA). IEEE,
Montreal, Canada, 6288–6294. https://doi.org/10.1109/ICRA.2019.8794136

[2] M. Bajracharya, M. Maimone, and D. Helmick. 2008. Autonomy for Mars Rovers:

Past, Present, and Future. Computer 41, 12 (2008), 44–50.
[3] J. Bares and D. Wettergreen. 1999. Dante II: Technical Description, Results, and

Lessons Learned. International Journal of Robotics Research 18, 7 (1999), 621–649.

[4] J Bellingham and K Rajan. 2007. Robotics in Remote and Hostile Environments.

Science 318, 5853 (2007), 1098–1102.
[5] J. Carlson and R. Murphy. 2005. How UGVs Physically Fail in the Field. IEEE

Transactions on Robotics 21, 3 (2005), 423–437.
[6] K. Chatzilygeroudis and J-B. Mouret. 2018. Using Parameterized Black-Box Priors

to Scale Up Model-Based Policy Search for Robotics. In ICRA 2018 - International
Conference on Robotics and Automation. IEEE, Brisbane, Australia, 5121–5128.

[7] R. Christopher. 2019. Mathematical Modelling and Control System Development of
a Remote Controlled, IMU Stabilised Hexapod Robot. Master’s thesis. University of

Cape Town, South Africa.

[8] E. Coumans and Y. Bai. 2016–2019. PyBullet, a Python module for physics

simulation for games, robotics and machine learning. http://pybullet.org.

[9] A. Cully, J. Clune, D. Tarapore, and J-B. Mouret. 2015. Robots that can Adapt like

Animals. Nature 521, 7553 (2015), 503–507.
[10] L. Dalcín, R. Paz, and M. Storti. 2005. MPI for Python. J. Parallel and Distrib.

Comput. 65, 9 (2005), 1108–1115.
[11] A. Davids. 2002. Urban Search and Rescue Robots: From Tragedy to Technology.

IEEE Intelligent Systems 17, 2 (2002), 81–83.

https://doi.org/10.1109/ICRA.2019.8794136
http://pybullet.org


GECCO ’21, July 10–14, 2021, Lille, France

None S1 S2

Failure scenario

0.0

0.1

0.2

0.3

0.4

0.5

S
p

ee
d

(m
/
s)

1

2

3
4

5

6

Adapted Walking Speed

Reference

Real

Simulated

(a)

None S1 S2

Failure scenario

0

10

20

30

40

T
ri

a
ls

1

2

3
4

5

6

Number of Adaptation Trials

Reality

Simulated

(b)

Figure 7: Real adaptation performance (a) Gait performance after adapting to failures in reality compared to simulation. Box
plots repeat the simulated data from the 40k maps in figure 6a for comparison (b) Trials required to adapt to failures in
reality compared to simulation. Green crosses are gait performance of real robot after adaptation. Red stars are mean gait
performance of the reference tripod gait. The numbers correspond to the experiment numbers in table 2.

[12] K. Deb and H-G. Beyer. 2001. Self-Adaptive Genetic Algorithms with Simulated

Binary Crossover. Evolutionary Computation 9, 2 (2001), 197–221.

[13] X. Ding, Z.Wang, A. Rovetta, and J. Zhu. 2010. Locomotion Analysis of a Hexapod

Robot. In Climbing and Walking Robots. InTechOpen, London, UK, 291–310.
[14] A. Eiben and J. Smith. 2015. Introduction to Evolutionary Computing - Second

Edition. Springer, Berlin, Germany.

[15] B. Flannery, S. Teukolsky, and W. Vetterling. 1986. Numerical Recipes. Cambridge

University Press, Cambridge, UK.

[16] P. Frazier. 2018. A Tutorial on Bayesian Optimization. arXiv:1807.02811 [stat.ML]

[17] M. Hildebrand. 1989. The Quadrupedal Gaits of Vertebrates: The Timing of

Leg Movements Relates to Balance, Body Shape, Agility, Speed, and Energy

Expenditure. BioScience 39, 11 (1989), 766.
[18] R. Isermann. 2006. Fault-Diagnosis Systems: An Introduction from Fault Detection

to Fault Tolerance. Springer Science & Business Media, London, UK.

[19] R. Kaushik, T. Anne, and J-B. Mouret. 2021. Fast Online Adapta-

tion in Robotics through Meta-Learning Embeddings of Simulated Priors.

arXiv:2003.04663 [cs.RO]

[20] R. McGhee and A. Frank. 1968. On the Stability Properties of Quadruped Creeping

Gaits. Mathematical Biosciences 3 (1968), 331–331.
[21] J-B. Mouret. 2020. Python3 Map-Elites. github.com/resibots/pymap_elites.

[22] J-B. Mouret and J. Clune. 2015. Illuminating Search Spaces by Mapping Elites.

arXiv:1504.04909 [cs.AI]

[23] A. Nagabandi, I. Clavera, S. Liu, R. Fearing, P. Abbeel, S. Levine, and C. Finn.

2019. Learning to Adapt in Dynamic, Real-World Environments Through Meta-

Reinforcement Learning. arXiv:1803.11347 [cs.LG]

[24] K. Nagatani and et al. 2013. Emergency Response to the Nuclear Accident at the

Fukushima Daiichi Nuclear Power Plant using Mobile Rescue Robots. Journal of
Field Robotics 30, 1 (2013), 44–63.

[25] R. Putter and G. Nitschke. 2017. EvolvingMorphological Robustness for Collective

Robotics. In IEEE Symposium Series on Computational Intelligence. IEEE, Honolulu,
USA, 1104–1111.

[26] R. Putter and G. Nitschke. 2018. Objective versus Non-Objective Search in

Evolving Morphologically Robust Robot Controllers. In IEEE Symposium Series
on Computational Intelligence. IEEE, Bengaluru, India, 2033–2040.

[27] ROBOTIS. 2006. Dynamixel RX-28 User Manual. Seoul, Korea.
[28] X. Song, Y. Yang, K. Choromanski, K. Caluwaerts, W. Gao, C. Finn, and J.

Tan. 2020. Rapidly Adaptable Legged Robots via Evolutionary Meta-Learning.

arXiv:2003.01239 [cs.RO]

[29] STMicroelectronics. 2020. STM32F405xx STM32F407xx Datasheet. Geneva, Switzer-
land.

[30] D. Tarapore, J. Clune, A. Cully, and J-B.Mouret. 2016. HowDoDifferent Encodings

Influence the Performance of the MAP-Elites Algorithm?. In Proceedings of the
Genetic and Evolutionary Computation Conference 2016 (Denver, Colorado, USA)
(GECCO ’16). Association for ComputingMachinery, New York, NY, USA, 173–180.

https://doi.org/10.1145/2908812.2908875

[31] V. Vassiliades, K. Chatzilygeroudis, and J-B. Mouret. 2017. Using Centroidal

Voronoi Tessellations to Scale Up the Multi-dimensional Archive of Phenotypic

Elites Algorithm. arXiv:1610.05729 [cs.NE]

[32] A. Winkler, C. Bellicoso, M. Hutter, and J. Buchli. 2018. Gait and Trajectory

Optimization for Legged Systems Through Phase-Based End-Effector Parameter-

ization. IEEE Robotics and Automation Letters 3, 3 (2018), 1560–1567.
[33] Xsens. 2009. MTi and MTx User Manual and Technical Documentation. Enschede,

Netherlands.

A APPENDICES
A.1 MAP-Elites Parameters
• Map dimensions: 6

• Controller dimensions: 32

• Number of niches: 20000, 40000

• Evaluations: 4 × 107
• Batch size: 2390

• Random initialisation: 1% of niches (Default)

A.2 M-BOA Parameters
• 𝜎2

𝑛𝑜𝑖𝑠𝑒
: 0.001

• 𝛼 : 0.9

• 𝜌 : 0.4

• 𝜅: 0.05

A.3 Supplementary Materials
Experiment source code, data, and videos are available online at:

https://github.com/chrismailer/mailer_gecco_2021
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