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Abstract— With their combination of power and compliance,
pneumatic actuators have great potential for enabling dynamic
and agile behaviors in legged robots, but their complex dynam-
ics impose control challenges that have hindered widespread
use. In this paper, we describe the development of a tractable
model and characterization procedure of an off-the-shelf double
acting pneumatic cylinder controlled by on/off solenoid valves
for use in trajectory optimization. With this we are able to
generate motions which incorporate both the body and actuator
dynamics of our robot Kemba: a novel quadrupedal robot
prototype with a combination of electric and pneumatic actu-
ators. We demonstrate both a 0.5m jump and land maneuver,
and a maximal 1m jump, approximately 2.2 times its leg
length, on the physical hardware with the proposed model and
approach. The hardware matches the desired trajectory with
a maximum height error of only 5 cm without any feedback
on the pneumatic joints, demonstrating the utility of the model
in high-level motion generation, and capability of the physical
robot.

I. INTRODUCTION

Powerful, robust actuation is vital for dynamic legged lo-
comotion. Pneumatic actuators have a number of advantages
that recommend them for this purpose: in addition to their
high force-to-weight ratio and inherent compliance due to
the compressibility of air, they are relatively inexpensive and
mechanically simple. They can be mounted directly to the
joint being actuated, eliminating the need for gearboxes and
transmission linkages, as well as the associated inertia and
backlash. Repeated collisions between the feet and ground
are an essential aspect of legged locomotion, making impact
resistance critical for legged robots, particularly when per-
forming agile dynamic maneuvers [1]. Geared transmissions
are limited in their maximum reduction ratio [2] or require
additional series elastic elements [3] to guarantee impact
robustness whilst still producing the high required joint
torques.

Pneumatic actuators are also backdrivable due to their
direct and low transmission inertia which also improves
their force transparency - a crucial component of legged
robot control [2]. The chamber pressure also provides a
direct measurement of the force produced at the output
(once friction has been accounted for) without the need for
expensive force transducers.

The hopping robots described in Raibert’s seminal publi-
cation, Legged Robots that Balance, provided a strong early
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Fig. 1. Kemba, a hybrid electric and pneumatic legged robot designed for
rapid maneuvers.

demonstration of the applicability of pneumatic actuation
to agile legged robots. Despite this, they were not widely
adopted in the field of legged robotics with more mechan-
ically complex hydraulic [4], quasi-direct-drive [1], [5]–[7]
and series elastic actuators [3], [8] being used due to their
relatively high bandwidth force control capabilities.

The predominant obstacle to their use is that they feature
slow dynamics due to the compressibility of air and nonlinear
mass flow rates [9] – a formidable challenge for traditional
control methods. Different control approaches have been
proposed for on/off pneumatic actuators such as sliding
mode control [10]–[12] and nonlinear model-predictive con-
trol [13], [14]. These are typically used to track reference
trajectories for joints [15] and tend to work against the
inherent body actuator dynamics rather than allowing them
to contribute to efficient locomotion of the robot. A better
alternative would be to incorporate the pneumatic actuator
dynamics early in the motion planning phase [16]. Trajectory
optimization is a promising method of synthesizing viable
motion trajectories which incorporate both robot and actuator
dynamics. It has a proven track record in the high-level
control of agile locomotion in legged robots, with examples
of its use including [6], [17]–[20].

In this paper, we present a tractable pneumatic model
which enables incorporation of complex pneumatic actuator
dynamics at the high level motion planning stage with the



aim of generating feasible motions for Kemba: a hybrid
electric and pneumatic quadrupedal robot designed with
dynamic gait and maneuverability in mind (Fig. 1).

We begin by briefly describing the mechanical design of
the robot. We then explain the control scheme, focusing on
the development and experimental validation of a tractable
pneumatic cylinder model for use in the trajectory optimiza-
tion problem formulation. Finally, we demonstrate the ability
of the robot to track the trajectory effectively through the
execution of a vertical jump motion.

II. HARDWARE PLATFORM

A. Robot Design

The legged robot Kemba aims to combine the best of
two actuation schemes, with high torque quasi-direct drive
electric motors at the hips for finer fidelity positioning, and
high force pneumatic pistons at the knees. This ’half robot’
prototype with with one foreleg and one hindleg is intended
as a platform to investigate explosive transient animal-like
motions such as leaping, and accelerating in a bound. Con-
sequently deployment outside of the lab environment has
not been considered. The robot weighs approximately 4.3 kg
without the support boom, has a body length of 0.5m, with
external power and computing.

The hip actuators are electric motors (TMotor AK70-10)
with a single-stage 10:1 planetary gear reduction producing
a peak output torque of 24.8Nm and a maximum speed
of 49.7 rad s−1. The two knees are actuated by off-the-shelf
double-acting pneumatic pistons (Festo DNSU-25-70-PPS-
A) with a 25mm diameter and a 70mm stroke, attached
48mm from the knee joint in a 3rd class lever arrangement.
This lever arm arrangement produces a peak knee torque
of approximately 18Nm. Air to each piston chamber is
controlled independently by fast-switching 2-way solenoid
valves with a nominal flow rate of 200Lmin−1 providing
four discrete operating modes for each piston.

Binary on/off valves are used over proportional valves as
they provide an order of magnitude reduction in cost and
encourage us to exploit a property of agile manoeuvres where
bang-bang control often emerges as the time optimal policy
[21], [22]. Air is supplied to the valves at a nominal pressure
of (0.7 ± 0.1)MPa by a 130Lmin−1 external compressor
with a 100L accumulator tank. Each piston is fitted with
a high resolution linear hall effect position sensor (Festo
SDAT-MHS) to track the movement of the bore and knee
joint. To maximize transient movement capabilities the legs
are arranged in an X-Type configuration [23].

B. Support Boom

The legged robot is connected to the 2.5m support boom
shown in Fig. 2 which serves to restrict the movement of the
body to only 3 degrees of freedom, and also provide state
information on the position, velocity, and acceleration of
the body. The robot can translate vertically and horizontally,
and rotate in pitch. Tensioned cables ensure that the robot
always remains perpendicular to the ground even as the boom
angle changes. State information is provided by three high

Fig. 2. Robot planarizing support boom

resolution encoders on each of the axes and an accelerometer
mounted to the end which is fused with a Kalman Filter to
provide a full state estimate. Position measurements from
the boom are accurate to approximately 0.3mm. The boom
is primarily composed of carbon fiber and weighs 2.7 kg
with a rotational inertia about about its central pivot of
4.82 kgm2, which is significant relative to the mass of the
robot. Consequently the dynamics of the boom are also
included in the rigid body calculations.

III. PNEUMATIC ACTUATOR MODEL

In this section, we develop a tractable model of a generic
double-acting pneumatic actuator through simplification of
an established physics-based model combined with charac-
terization experiments.

A. Physical Model

A double acting pneumatic actuator is a device with two
chambers separated by a sliding bore. We will base our
approximate model of this device on the physical model
presented in [9] where the pressure dynamics of a single
chamber can be described by the following differential
equation:

Ṗ =
κRT

V
ṁ+

κV̇

V
P. (1)

The first term describes the change in pressure resulting
from a mass flow of air ṁ entering the chamber and the
second term describes the change in pressure as a result of
the moving bore producing a change in volume V̇ . The flow
of air is a function of the valve command u ∈ {0, 1}, the
orifice area a, and the thin-plate flow function ϕ():

ṁ =

{
u · a · ϕ(Pu, Pd) if Pu ≥ Pd (2a)
−u · a · ϕ(Pd, Pu) if Pu < Pd (2b)

, where the thin-plate flow function ϕ() is described by:
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The direction of air flow through the valve and into
the chamber switches depending on whether the upstream
pressure Pu or downstream pressure Pd is greater on either
side of the valve orifice, and the flow regime switches
depending on whether the pressure difference has exceeded
a threshold θ and become chocked, shown by (3b). α, β, θ,
and κ are constants.



While this model fully describes the internal dynamics, Ṗ
and ṁ can both change rapidly and are coupled, making the
equations numerically stiff. This requires timesteps on the
order of microseconds to integrate which is infeasible for
high level motion optimization. To identify and characterize
the convergent dynamics of this system, we consider both
terms of equation 1 independently and combine their effects
to produce the approximated model:

• Mass flow dynamics: we simplify this to a first order
force/pressure response by considering the pressure
response of a single locked volume chamber.

• Steady-state velocity dynamics: we consider the com-
bined velocity dependent effects of two opposing cham-
bers and approximate this with a linear damper model.
Considering both chambers together is reasonable as the
combined chamber volumes are linked with an increase
in volume of one chamber having a corresponding
decrease in the other.

The justification for these approximations and characteriza-
tion procedure is detailed in the following sections.

1) Chamber Force Response: When a valve state changes,
air enters or leaves the piston chamber producing a particular
pressure/force response at the output. To characterize this
response we connected a force transducer to the output
rod which we held stationary, effectively making V̇ = 0
and eliminating the second term in (1). By doing so the
pressure/force dynamics become a function of the mass
flow ṁ through the valve and the chamber volume V . We
expect this response to be dependent on valve state, and
the chamber volume. The compressor maintains an output
pressure between 0.6MPa and 0.8MPa. We performed 5
tests at 0.6MPa, 0.7MPa and 0.8MPa for the two valve
states at both the maximum and minimum chamber volumes.
This resulted in a total of 60 tests which are summarized in
Fig. 3 with the command being sent to the solenoid at t = 0s.
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Fig. 3. Normalized force response of a constant volume chamber for
compression and venting. Dashed lines show the corresponding first order
approximation.

Fig. 3 shows that the response to a venting or compression
command is independent of the supply pressure over the
tested range, with the 0.6MPa to 0.8MPa pressures pro-
ducing almost identical response curves. The valve switching
dead-time is also consistent at 6ms. The responses can be
well approximated by a first-order response as shown by
the dashed lines in Fig. 3. The dead-time is included later
as described in IV-B. While more complex approximations
might provide a marginally better fit, trajectory optimization

will likely be a greater source of inaccuracy with timesteps
in the order of 5ms to 10ms. We therefore approximate the
chamber dynamics with the following first-order differential
equation:

F = Fstatic · u− τḞ , (4)

where Fstatic is the maximum steady-state force produced
by the chamber, which is controlled by the valve command
u ∈ {0, 1}, and τ is the time constant of the first-order
approximation. The time constants of the fitted functions are
summarized in Table I.

TABLE I
CHAMBER FORCE RISE TIME

Chamber Rise Time
Mode x = 0mm x = 70mm

Compression (u = 1) 8ms 25ms
Venting (u = 0) 13ms 37ms

The time constant is a function of both the valve mode,
and the amount of volume needing to be filled or vented in
the chamber. Furthermore, it can be shown that this response
time is linearly related to the chamber volume. Fig. 4 shows
the pressure response for 5 chamber volume fractions from
equation 1 to justify this linear relation.
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Fig. 4. Chamber force response for the minimum to maximum chamber
volumes expressed as a percentage of the volume range

While the rise time is linearly dependent on chamber
volume, the valve commands u are discrete. To ensure the
model remains continuous for gradient based methods we
also linearly interpolate the rise time for the chamber modes
with the discrete states being imposed during trajectory
optimization. The rise time can therefore be expressed as
the following linear function:

τ(u, x) = τ0 + uτ1 + xτ2 + uxτ3 (5)

Where x is the extension of the actuator and the four time
constants τ0, τ1, τ2, τ3, are fit directly from the measured
data using a bilinear interpolation.

2) Steady-state Velocity Characterization: When the pis-
ton bore moves, its movement produces a proportional
change in the volume of the extend and retract chambers.
This change in volume produces a pressure/force change
governed by term 2 in (1). To characterize this behavior two
identical pistons were arranged opposing each-other with a



Fig. 5. Piston characterization setup showing the resistance piston (A),
the piston being characterized (B), force transducer (Axia80-M20) (C) and
flow restricting valve (D)

force transducer in between as shown in Fig. 5. The steady-
state force produced by the piston was measured at different
velocities by varying the resistance applied by the opposing
piston using a flow restricting valve, analogous to a motor
dynamometer. Multiple tests were required to fully explore
the velocity range achievable by the piston. Fig. 6 shows
the force produced by the piston over this velocity range for
each of the 4 discrete actuation modes.
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Fig. 6. Force velocity relationship for a double acting pneumatic actuator

Based on these data the actuator behaves almost as a linear
damper where the damping constant is a function of the
actuation mode. While also a function of supply pressure, we
only use the fit for a nominal supply pressure of 0.7MPa. A
linear function was fit to the data in Fig. 6 and the parameters
from this are summarized in Table II.

The Fstatic force corresponds to the steady-state force
in (4). The output force of the double acting piston can
now be described by the difference in the force produced
between the extend and retract chambers with a simple
damping term. To ensure that the damping term varies based
on the actuation mode, but still remains continuous, we
again use a bilinear interpolation. We do not consider this
an accurate approximation, but rather chose the simplest
interpolation method to maintain continuity and provide a
means to transition between states during the optimization
procedure.

TABLE II
PNEUMATIC STEADY-STATE LINEAR FIT

Mode Supply (MPa) Fstatic (N) cd (Ns/m) R2

Extend
0.6 287 91 0.992
0.7 324 97 0.994
0.8 349 103 0.995

Retract
0.6 -239 78 0.995
0.7 -260 84 0.989
0.8 -291 89 0.994

Both
0.6 41 52 0.993
0.7 50 59 0.989
0.8 55 64 0.991

Unactuated 0.0 0 25 0.980

cd(ue, ur) = c0 + uec1 + urc2 + ueurc3 (6)

Each of the constants c0, c1, c2, c3 is found by fitting
the bilinear surface to the data in table II. We combine
the transient behaviour of the two opposing chambers and
the combined damped output behaviour into the following
actuator force model:

F = Fe(ue, xe)− Fr(ur, xr)− cd(ue, ur)ẋ, (7)

where Fe() and Fr() are the extend and retract chamber
first-order dynamics and cd() is the combined damping
effect.

We experimented with incorporating the damping effect
into the first-order chamber dynamics with a term that
modified the static force Fstatic in (4). However, while a
marginally better approximation, we were unable to con-
verge on a feasible solution in optimization. Simplifying the
model to a single damping term still served as a sufficient
approximation with dramatically better convergence during
the trajectory optimization step. To verify the performance of
the approximated actuator model we compared it to the force
predicted by the physics-based model. To adequately explore
the operating region we supplied 10Hz random Bernoulli
distributed valve commands with uniformly distributed ran-
dom piston position and velocity states. Fig. 7 shows the
force predicted by the physics-based model overlaid with
the force predicted by the approximated model. Based on
this we can expect the motions generated with trajectory op-
timization to be a close approximation to what is achievable
with the real hardware.

IV. CONTROL

The pneumatic actuator model for a nominal pressure
of 0.7MPa was incorporated into a trajectory optimization
problem that was used to generate a torque-minimizing
trajectory for a 0.5m jump and a 1m jump. We then ex-
ecuted these trajectories on the robot with a simple feedback
controller on the hip and shoulder joints.

A. Trajectory Optimization

1) Problem Formulation: The problem was formulated
using the first-order contact-implicit direct collocation for-
mulation described in [24]. The trajectory consisted of N =
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100 timesteps having a variable duration of 5ms±20%. This
formulation uses complementarity constraints to model uni-
lateral collision behavior – namely, the foot-ground contacts
and the hard end stops of the pistons. These constraints were
made more tractable using a penalty minimization method
[25].

2) Dynamic Model: We used the planar rigid-body model
illustrated in Fig. 8 to represent the robot. The piston body
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Fig. 8. Robot rigid body arrangement with the absolute angle formulation
of the generalized coordinates.

and rod were included as rigid bodies, as they make up a
significant fraction of the mass of the leg. The leg with
the piston is modeled as a closed kinematic chain, with
explicitly-defined constraint forces maintaining the connec-
tion between the piston rod and tibia [26]. To simplify the
dynamic equations, the angles of each link are referenced
to the world frame [26]. The inertial effects of the geared
hip rotors and the boom were also included in the dynamic
model.

Additional constraints are required to fully integrate the
simplified pneumatic actuator model into the trajectory opti-
mization problem. The chamber force dynamics in (4) are
explicitly modeled using differential equations, which are
solved numerically using the same implicit Euler integration
scheme applied to the robot’s equations of motion.

To approximate the switching behavior of the binary
solenoid valves, we apply the constraint

ui(1− ui) = 0, (8)

where ui ∈ [0, 1] is the command being sent to the solenoid
valves at the ith node. This ensures that the valve can only
take on the value 1 or 0 at each timestep which correspond
to the on or off states respectively. As with the other
complementarity constraints, we use a penalty minimization
method to make this constraint more tractable for the solver.

3) Jumping Task: To produce a jump and land motion
we specified that the body must start and end horizontal
with both feet on the ground, maintain the same x position,
and reach a desired body height at the middle node of the
trajectory. The hip motor positions were left unconstrained
and the knee pistons were set to start in their fully retracted
state. Only the initial and final states of the model were
specified, leaving the timing of the valves, movement of the
joints, and contact scheduling to the optimizer.

4) Cost Function: We applied the following cost function
to minimize the torque exerted by the electric motors to
perform the jump:

J =

N∑
i=1

τT
i τi + ρPi (9)

Where τi and Pi are the hip torques and complementarity
penalty terms at the ith node. As in the MIT Cheetah desk
jump [18], the purpose of this optimization was primarily to
regularize the torque profiles against chattering. The weight
ρ is set to 1× 104 to prioritize penalty minimization.

5) Solver: The optimization problem was written in the
Python library Pyomo [27] and had 8982 variables. It was
solved using the NLP solver IPOPT [28] with the linear
MA86 solver [29] in approximately 55 s on a 2-core laptop.

B. Trajectory Tracking

From the optimization we get the desired hip motor angles
qd, velocities q̇d, hip torques τd and valve commands u.
These trajectories are at approximately 200Hz with some
variation due to the variable timestep, however the robot
controller executes at a fixed frequency of 1 kHz on an
external Speedgoat real-time target machine. We therefore
interpolate the trajectories from optimization to match the
controller frequency. Each hip motor uses the following
controller to track the desired trajectory:

τ = Kp(qd − q) +Kd(q̇d − q̇) + τff, (10)

where the joint torque commands are used as feed-forward
torques τff with a proportional-derivative (PD) controller
to additionally track joint position and velocity. The knee
pistons are sent the valve commands shifted forwards by
6ms to account for the valve dead-time evident in Fig. 3.

Fig. 9 shows the valve commands and motor torques
produced by trajectory optimization for the jump and land
motion. The pneumatic actuator dynamics can clearly be seen
in the expected piston force with force dropping as the knee



Fig. 9. Valve commands and motor torques resulting from optimization
for the 0.5m jump trajectory.

extends faster. It is worth noting that the solution accounts for
the residual actuator force as the chamber vents, by turning
off the extend valve even before the feet leave the ground at
0.2 s.

V. HARDWARE VALIDATION

We executed the 0.5m jump and land trajectory shown in
Fig. 9 Kemba. The body and actuator tracking performance
is shown in Fig. 10 and a video of the jumps is included in
the supplementary material.

The final jump height is the combined effect of the
piston dynamics in the closed kinematic chain arrangement,
contact timing, and body dynamics. The similarity between
the optimized trajectory and the resulting trajectory on the
hardware with a maximum height error of only 3 cm (see
Fig. 10) provides a validation of the proposed model and
demonstrates its applicability to real hardware.

We additionally attempted a 1m maximal jump without a
landing phase. This height corresponds to roughly twice the
leg length of the robot – a considerable height for a robot
effectively weighing 7 kg, which illustrates the benefit of the
pneumatic actuators towards explosive agility. A video of
this jump is also included in the supplementary material and
a sequence of frames from the video is shown in Fig. 11.

While our approach results in close to real performance
with only open-loop trajectory tracking, model errors are
inevitable and will compound throughout the motion. This
is evident in Fig. 10 with knee piston tracking deteriorating
towards the end of the motion during the landing phase.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a tractable pneumatic cylinder model
and trajectory optimization formulation that enables the
incorporation of full pneumatic actuator dynamics into high
level motion generation. Execution of a generated 0.5m
jump and land trajectory on a prototype electric-pneumatic
robot is a further contribution, and demonstrates the validity
and utility of the model, and capability of the hardware.

In the hardware experiment, the robot was able to repeat-
edly execute a 0.5m vertical jump and land, as well as a
maximal 1m jump by tracking the result of the trajectory
optimization. This presents a first step in integrating powerful

Fig. 10. Body and actuator states on the hardware compared to the reference
trajectory for three 0.5m jumps.

Fig. 11. A sequence of overlaid frames showing the 1m jump without
landing. The squares on the checkerboard are 9 cm and the green rope serves
to catch the robot.

and robust pneumatic actuators with modern legged robot
control approaches. In future work, we aim to close the
loop with a low-level pressure tracking controller for the
pneumatics which can perform minor corrections around the
nominal trajectory to further improve tracking performance
to the level required for executing dynamic motions such as
bounding, and jumping over obstacles.
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